Screening of halophilic bacteria producing extracellular hydrolytic enzymes from Valanthakad Mangroves, Kochi, Kerala

  • K. S. Rishad Screening of halophilic bacteria producing extracellular hydrolytic enzymes from Valanthakad Mangroves, Kochi, Kerala
  • Jisha M. s. School of Bioscience, Mahatma Gandhi University, Kottaya, Kerala, India

Abstract

The aim of this study was to determine the diversity of moderately halophilic bacteria with hydrolase activities. Screening bacteria from different hypersaline environments in Valanthakad mangrove ecosystem led to the isolation of a total of 32 moderately halophilic bacteria able to produce different hydrolases which includes lipase, urease, gelatinase, cellulose, amylase, pectinase, protease and chitinase. These bacteria are able to grow optimally in media with 5–15% salts and in most cases up to 20–25% salts. These strains were identified as Bacillus aerophilus, Bacillus pumilus, Pseudomonas plecoglossicida, Achromobacter insolitus and Lysinibacillus fusiformis by 16S rDNA – PCR. Although most culture collection strains are not able to produce hydrolases, it has been shown that environmental isolates can produce these potentially biotechnological important enzymes. Key Words: halophilic, mangrove, pectinase, protease, chitinase

Author Biographies

K. S. Rishad, Screening of halophilic bacteria producing extracellular hydrolytic enzymes from Valanthakad Mangroves, Kochi, Kerala
Screening of halophilic bacteria producing extracellular hydrolytic enzymes from Valanthakad Mangroves, Kochi, Kerala
Jisha M. s., School of Bioscience, Mahatma Gandhi University, Kottaya, Kerala, India
School of Bioscience, Mahatma Gandhi University, Kottaya, Kerala, India

References

K. P. K. Sandhyarani , (2014) International Journal of Phytotherapy, 4: 127-130.

D. J. Macintosh, E. C. Ashton and S. Havanon, (2002) Estuarine, Coastal and Shelf Science, 55: 331-345.

H. Thatoi, B. C. Behera, and R. R. Mishra, (2013) Mycology, 4: 54-71.

W. Ludwig and K.H. Schleifer, FEMS (1994) Microbiology Reviews, 15: 155-173.

L. Hankin and S. L. Anagnostakis, (2012) Mycologia, 67: 597-607.

W. Xiaofang, X. Xushi, W. Min, W. Guan, and L. Qingmei, (2001) Shengwu Jjishu- Biotechnology, 11: 27-30.

A R. Cook, (1976) Journal of General Microbiology, 92: 32-48.

F. Hoster, J. E. Schmitz, and R. Daniel, (2005) Applied Microbiology and Biotechnology, 66: 434-442.

C. Wiwat, P. Siwayaprahm, and A. Bhumiratana, (1999) Current Microbiology, 39: 134-140.

N. Saitou and M. Nei, 1987) Molecular Biology and Evolution, (4: 406-425.

J. Felsenstein, (2004) The American Journal of Human Genetics, 74: 1074.

K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar, (2011) Molecular Biology and Evolution, 28: 2731-2739.

D. M. Alongi, (2002) Environment Conservation, 29: 331-349.

D. Alex, R., Joseph, (2015) Journal of Maharshi Dayanand College, 1: 1.

S. A. Sabry, (1992) Journal of Basic Microbiology, 32: 107-111.

S. L. Wang, I. L. Shih, T. W. Liang, and C. H. Wang, (2002) Journal of Agricultural and Food Chemistry, 50: 2241-2248.

B. M. Lamine, B. M. Lamine, and A. Bouziane, (2012) Journal of Biotechnology & Biomaterials, 2: 3-7.

F. Saleem, A. Younas, R. Bashir, S. Naz, N. Munir, and A. R. Shakoori, (2014) Pakistan Journal of Zoology, 46, 1491-1501.

J.Chun, J.H. Lee, Y. Jung, M. Kim, S. Kim, B.K. Kim and Y.W.Lim, (2007) International Journal of Systematic and Evolutionary Microbiology, 57: 2259-2261.

V. Gohel, T. Chaudhary, P. Vyas, and H. S. Chhatpar, (2004) Indian Journal of Experimental Biology, 42: 715-720.

Y. C. Kim, H. Jung, K. Y. Kim, and S. K. Park, (2008) European Journal of Plant Pathology, 120: 373-382.

D. Suryanto, R. H. Wibowo, E. B. M. Siregar, and E. Munir, (2012) African Journal of Microbiology Research, 6: 2053-2059.

K. Arunkumar and R. Karthik, (2013) International Journal of Innovative and Applied Research, 11: 2347-9272.

Published
2017-03-29
Section
Article