Induction and catabolite repression of alpha-amylase synthesis in Bacilluslicheniformis SKB4

  • Saptadip Samanta Department of Physiology, Midnapore College, Midnapore, Paschim Medinipur 721101, West Bengal, India
  • Subhajit Jana Department of Physiology, Midnapore College, Midnapore, Paschim Medinipur 721101, West Bengal, India
  • Sanjay Kar Department of Botany, Midnapore College, Midnapore, Paschim Medinipur 721101, West Bengal, India
  • Pradeep Kumar Das Mohapatra Department of Microbiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
  • Bikash Ranjan Pati Department of Microbiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
  • Keshab Chandra Mondal Department of Microbiology, Vidyasagar University, Midnapore, 721102, West Bengal, India

Abstract

Microbial amylases have an exciting potentiality and are being used extensively in different industries. In this study, regulation of amylase biosynthesis was examined in Bacillus licheniformis SKB4 (wild type) and its mutant strain (8b). The mutant strain was developed by using UV exposure. Expression of the a-amylase gene of Bacillus licheniformis was activated by inducer and subject to catabolite repression. Addition of exogenous glucose or sucrose repressed bio-synthesis of a-amylase which was concentration (0.05-1.0% w/v) dependent. However, mutant strain could enable to overrule the glucose mediated repressive effect. Supplementation of second messenger like cyclic adenosine 3',5'-monophosphate (cAMP, 5 mM) along with glucose could a little bit improve amylase synthesis in wild strain. Antibiotics like rifampicin and tetracycline (ribonucleic acid and protein synthesis inhibitor; 100mg/ml) had stopped the release of enzyme in both wild and mutant strain. Amylase production was also inhibited in presence of respiratory inhibitor 2,4-dinitrophenol (uncoupler) at (5mM) concentration. Thus, the pattern of regulation of a-amylase production in the present strain was in multiple forms; it showed the classical glucose effect without stimulation of second messenger system. 

References

R L Bezbaruah, K R Pillai, B K Gogoi, H D Singh, J N Baruah. (1988) Journal of Basic Microbiology, 27, 483-8.

J Hao, J Pazlarová, M Strnadová, J Chaloupka, (1989) Folia Microbiologica, 34(3), 179-84.

M V Ramesh, B K Lonsane,(1991) BiotechnologyLetters, 13(5), 355-360.

O Egeter, R Brückner, (1996) Molecular microbiology, 21(4), 739-749.

B Magasanik. (1961)Quantitative Biology,26,249–54.

M H Saier,(1989) Microbiological Reviews, 53(1), 109-120.

BM Laoide, GH Chambliss, D J McConnell, (1989) Journal of Bacteriology, 171(5), 2435-2442.

W Epstein, LB Rothman-Denes, J Hesse, (1975) Proceedings of the National Academy of Sciences, 72(6), 2300-2304.

J Fukumoto, T Yamamoto D, Tsuru, K Ichikawa,(1958) Proceedings of International Symposiumon Enzyme Chemistry. Kyoto (Japan), 479-82.

J F Tobey, A AYousten,(1977) Developments in Industrial Microbiology, 18, 499-510.

R A Srivastava, J N Nigam, K R Pillai, J N Baruah, (1980) Indian Journal of Experimental Biology, 181, 972-6.

MA Baig, J Pazlarova, J Votruba, (1984) Folia Microbiologica, 29(5), 359-364.

V P Murygina,(1988)Mikrobiologiia, 57(5), 734-9.

N E Welker, L LCampbell (1963) Journal of Bacteriology, 86, 687-91.

N Saito, K Yamamoto,(1975) Journal of Bacteriology, 121(3), 848-56.

J Frankena,(1987) Bioenergetics of growth and product formation in Bacillus licheniformis. Free University Press, Amsterdam, 12-20.

C Haseltine, M Rolfsmeier, P Blum, (1996) Journal of Bacteriology, 178(4), 945-950.

C J Hueck, W Hillen, (1995) Molecular Microbiology, 15(3), 395-401.

S Samanta, M Jana, C Maity, S Kar, P K D Mohapatra, B R Pati, K C Mondal, (2009) Biocatalysis and Biotransformation, 27(2), 131-135.

P Bernfeld, (1955)Methods in Enzymology, 1, 149-58.

K N Varalakshmi, B S Kumudini, B N Nandini, J D Solomon, B Mahesh,R Suhas, AP Kavitha,(2008) J ApplBiosci, 1(2), 46-53.

N E Welker, L L Campbell, (1963) Journal of Bacteriology, 86(6), 1202-1210.

S Medda, A K Chandra, (1980) Journal of Applied Microbiology, 48(1), 47-58.

N Saito, (1973) Archives of Biochemistry and Biophysics, 155(2), 290-298.

D M Nickless, R J Sobieski, S SCrupper,(2001) Bioscene, 27, 27-29.

S Samanta, A Das, S K Halder, A Jana, S Kar, P K D Mahapatra, B R Pati, K C Mondal,(2014)Acta BiolgicaSzegediensis,58(2), 147-56.

Magasanik B, (1970) J. R. Beckwith and D. Zipser (ed.), The lactose operon. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 189-219.

G Coleman,(1967) Journal of General Microbiology, 49, 421-31.

R L Perlman, I Pastan, (1968) The Journal of Biological Chemistry, 243, 5420-27.

H HHyun, J G Zeikus, (1985) Applied Environmental Microbiology, 49, 1168-73.

W L Nicholson, G H Chambliss,(1985) Journal ofBacteriology,161, 875-81.

N Yoshigi, M Kamimura,(1988) Agricultural Biological Chemistry, 52 (9), 2365-66.

A Tonkova,(1991) Journal of Basic Microbiology, 31, 217-22.

H M R Epps, E F Gale,(1942) Biochemical Journal, 36, 619-23.

J Monod,(1947) Growth Symposium, XI, 223-89.

N J Shih, R G Labbe,(1994) Current Microbiology, 29, 163-9.

R S Makman, E W Sutherland,(1965) The Journal of Biological Chemistry, 240,1309-14.

A Ullmann, G Contesse, M Crepin, F Gros, J Monod,(1969) Proceedings, No.4. National Institutes of Health, Bethesda, Md., 215-46.

I Pastan, S Adhya,(1976) Bacteriological Reviews, 40, 527-51.

A Ullmann, A Danchin,(1983) Advance Cyclic Nucleotide Research, 15, 1-53.

Published
2017-12-05
Section
Microbial Physiology and Biochemistry